The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products.

نویسندگان

  • R J Sarnovsky
  • E W May
  • N L Craig
چکیده

The bacterial transposon Tn7 translocates by a cut and paste mechanism: excision from the donor site results from double-strand breaks at each end of Tn7 and target insertion results from joining of the exposed 3' Tn7 tips to the target DNA. Through site-directed mutagenesis of the Tn7-encoded transposition proteins TnsA and TnsB, we demonstrate that the Tn7 transposase is a heteromeric complex of these proteins, each protein executing different DNA processing reactions. TnsA mediates DNA cleavage reactions at the 5' ends of Tn7, and TnsB mediates DNA breakage and joining reactions at the 3' ends of Tn7. Thus the double-strand breaks that underlie Tn7 excision result from a collaboration between two active sites, one in TnsA and one in TnsB; the same (or a closely related) active site in TnsB also mediates the subsequent joining of the 3' ends to the target. Both TnsA and TnsB appear to be members of the retroviral integrase superfamily: mutation of their putative DD(35)E motifs blocks catalytic activity. Recombinases of this class require a divalent metal cofactor that is thought to interact with these acidic residues. Through analysis of the metal ion specificity of a TnsA mutant containing a sulfur (cysteine) substitution, we provide evidence that a divalent metal actually interacts with these acidic amino acids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species.

In the presence of ATP and Mg(2+), the bacterial transposon Tn7 translocates via a cut and paste mechanism executed by the transposon-encoded proteins TnsA+TnsB+TnsC+TnsD. We report here that in the presence of Mn(2+), TnsA+TnsB alone can execute the DNA breakage and joining reactions of Tn7 recombination. ATP is not essential in this minimal system, revealing that this cofactor is not directly...

متن کامل

Unexpected structural diversity in DNA recombination: the restriction endonuclease connection.

Transposition requires a coordinated series of DNA breakage and joining reactions. The Tn7 transposase contains two proteins: TnsA, which carries out DNA breakage at the 5' ends of the transposon, and TnsB, which carries out breakage and joining at the 3' ends of the transposon. TnsB is a member of the retroviral integrase superfamily whose hallmark is a conserved DDE motif. We report here the ...

متن کامل

The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD.

The excision of transposon Tn7 from a donor site and its insertion into its preferred target site, attachment site attTn7, is mediated by four Tn7-encoded transposition proteins: TnsA, TnsB, TnsC, and TnsD. Transposition requires the assembly of a nucleoprotein complex containing all four Tns proteins and the DNA substrates, the donor site containing Tn7, and the preferred target site attTn7. T...

متن کامل

Conformational toggling controls target site choice for the heteromeric transposase element Tn7

The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has th...

متن کامل

Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system.

We have reconstituted the transposition of the bacterial transposon Tn7 into its specific insertion site attTn7 with four purified Tn7-encoded proteins, TnsA+TnsB+TnsC+TnsD, and ATP. TnsA+TnsB+TnsC form a "core" recombination machine that recognizes the transposon ends and executes DNA breakage and joining; TnsD specifically recognizes attTn7. TnsA+TnsB+TnsC are specifically targeted to attTn7 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 15 22  شماره 

صفحات  -

تاریخ انتشار 1996